Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
3.
Aust Dent J ; 66(2): 136-149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33486775

RESUMO

BACKGROUND: Extraction of mandibular third molars (M3M) close to the inferior alveolar nerve (IAN) has a higher risk of neurological disturbance. This review aims to evaluate the evidence supporting the use of the coronectomy technique compared to complete extraction for such M3Ms. Case studies by a specialist oral and maxillofacial surgeon are included to illustrate clinical practice. METHODS: Three databases (Cochrane Library, Embase, PubMed) were searched (November 2020). Additional articles were sought by hand searching the reference list of included articles. All studies published in English comparing outcomes of coronectomy with complete extraction with at least 50 subjects and 6 months follow-up were included. RESULTS: Of the six included studies, five reported a lower rate of IAN disturbance after coronectomy compared with complete extraction. There were no reported cases of lingual nerve disturbance. Other outcomes of coronectomy such as pain, infection, alveolar osteitis were either similar or lower compared to complete extraction. There were high rates of root migration but low rates of exposure and reoperation. Follow-up protocols varied considerably. CONCLUSIONS: There is medium quality evidence to support the option of coronectomy for high risk M3M cases. Further studies to develop follow-up protocols to assist general dental practice is warranted.


Assuntos
Dente Impactado , Traumatismos do Nervo Trigêmeo , Humanos , Mandíbula/cirurgia , Nervo Mandibular , Dente Serotino/cirurgia , Coroa do Dente/cirurgia , Extração Dentária/efeitos adversos , Dente Impactado/cirurgia , Traumatismos do Nervo Trigêmeo/epidemiologia , Traumatismos do Nervo Trigêmeo/etiologia
4.
Phys Rev Lett ; 124(14): 146601, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338966

RESUMO

We report observation of electric field driven conductivity with negative differential conductance and resistive switching in insulating SrTiO_{3} samples over a wide range of applied voltages at low temperatures. The observed current follows I=I_{0}exp[-(E^{*}/E)^{1/2}] at large applied electric field, corresponding to variable range hopping conduction with a Coulomb gap in domain walls. Our data are sufficient to discriminate unambiguously between Shklovskii and Mott hopping via their different electric field exponent. Under some conditions space-charge-limited currents are observed, and the charge mobility limit is determined to be in the range of 17 and 210 cm^{2}/Vs.

5.
Phys Chem Chem Phys ; 22(13): 6906-6918, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181452

RESUMO

The intriguing coupling phenomena among spin, phonon, and charge degrees of freedom in materials having magnetic, ferroelectric and/or ferroelastic order have been of research interest for the fundamental understanding and technological relevance. We report a detailed study on structure and phonons of Al0.5Ga0.5FeO3 (ALGF), a lead-free magnetoelectric material, carried out using variable temperature dependent powder neutron diffraction and Raman spectroscopy. Neutron diffraction studies suggest that Al3+ ions are distributed in one tetrahedrally (BO4) and three octahedrally (BO6) coordinated sites of the orthorhombic (Pc21n) structure and there is no structural transition in the temperature range of 7-800 K. Temperature dependent field-cooled and zero-field-cooled magnetization studies indicate ferrimagnetic ordering below 225 K (TN), and that is reflected in the low temperature powder neutron diffraction data. An antiferromagnetic type arrangement of Fe3+ ions with net magnetic moment of 0.13 µB/Fe3+ was observed from powder neutron diffraction analysis and it corroborates the findings from magnetization studies. At the magnetic transition temperature, no drastic change in lattice strain was observed, while significant changes in phonons were observed in the Raman spectra. The deviation of several mode frequencies from the standard anharmonicity model in the ferrimagnetic phase (below 240 K) is attributed to coupling effect between spin and phonon. Spin-phonon coupling effect is discernable from Raman bands located at 270, 425, 582, 695, 738, and 841 cm-1. Their coupling strengths (λ) have been estimated using our phonon spectra and magnetization results. BOn (n = 4, 6) libration (restricted rotation) mode at 270 cm-1 has the largest coupling constant (λ∼ 2.3), while the stretching vibrations located at 695 and 738 cm-1 have the lowest coupling constant (λ∼ 0.5). In addition to the libration mode, several internal stretching and bending modes of polyhedral units are strongly affected by spin ordering.

6.
Sci Rep ; 10(1): 2991, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076080

RESUMO

The discovery of single-phase multiferroic materials and the understanding of coupling mechanisms between their spin and polarization is important from the point of view of next generation logic and memory devices. Herein we report the fabrication, dielectric, ferroelectric, piezo-response force microscopy, and magnetization measurements of Pd-substituted room-temperature magnetoelectric multiferroic PbPd0.3Ti0.7O3 (PbPdT) thin films. Highly oriented PbPdT thin films were deposited on {(LaAlO3)0.3(Sr2AlTaO6)0.7} (LSAT) substrates in oxygen atmosphere using pulsed laser deposition technique. X-ray diffraction studies revealed that the films had tetragonal phase with (001) orientation. Surface morphology studies using atomic force and scanning electron microscopy suggest a smooth and homogeneous distribution of grains on the film surface with roughness ~2 nm. A large dielectric constant of ~1700 and a low-loss tangent value of ~0.3 at 10 kHz were obtained at room temperature. Temperature dependent dielectric measurements carried out on Pt/PbPdT/La0.7Sr0.3MnO3 (LSMO) metal-dielectric-metal capacitors suggest a ferroelectric to paraelectric transition above 670 K. The measured polarization hysteresis loops at room temperature were attributed to its ferroelectric behavior. From a Tauc plot of (αhν)2 versus energy, the direct band gap Eg of PbPdT thin films was calculated as 3 eV. Ferroelectric piezoelectric nature of the films was confirmed from a strong domain switching response revealed from piezo-response force microscopy. A well-saturated magnetization M-H loop with remanent magnetization of 3.5 emu/cm3 was observed at room temperature, and it retains ferromagnetic ordering in the temperature range 5-395 K. Origin of the magnetization could be traced to the mixed oxidation states of Pd2+/Pd4+ dispersed in polar PbTiO3 matrix, as revealed by our x-ray photoelectron spectroscopic results. These results suggest that PbPdT thin films are multiferroic (ferroelectric-ferromagnetic) at room temperature.

7.
J Phys Condens Matter ; 32(5): 055403, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31610531

RESUMO

Previous studies of Barkhausen noise in PZT have been limited to the energy spectrum (slew rate response voltages versus time), showing agreement with avalanche models; in barium titanate other exponents have been measured acoustically, but only at ambient temperatures. In the present study we report the Omori exponent (0.95 [Formula: see text] 0.03) for aftershocks in PZT and extend the barium titanate studies to a wider range of temperature.

8.
Rep Prog Phys ; 82(9): 092501, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31370048

RESUMO

We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The x-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2θ angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560 K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 µC cm-2) apparent ferroelectric hysteresis remains in samples shown to be pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent work reveals real bulk SnTiO3, but it possesses an ilmenite-like structure with an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in PLD film data suggests any perovskite content at all. The fact that x-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).

10.
Sci Rep ; 9(1): 1685, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737467

RESUMO

We have studied the atomic force microscopy (AFM), X-ray Bragg reflections, X-ray absorption spectra (XAS) of the Pd L-edge, Scanning electron microscopey (SEM) and Raman spectra, and direct magnetoelectric tensor of Pd-substituted lead titanate and lead zirconate-titanate. A primary aim is to determine the percentage of Pd+4 and Pd+2 substitutional at the Ti-sites (we find that it is almost fully substitutional). The atomic force microscopy data uniquely reveal a surprise: both threefold vertical (polarized out-of-plane) and fourfold in-plane domain vertices. This is discussed in terms of the general rules for Voronoi patterns (Dirichlet tessellations) in two and three dimensions. At high pressures Raman soft modes are observed, as in pure lead titanate, and X-ray diffraction (XRD) indicates a nearly second-order displacive phase transition. However, two or three transitions are involved: First, there are anomalies in c/a ratio and Raman spectra at low pressures (P = 1 - 2 GPa); and second, the c/a ratio reaches unity at ca. P = 10 GPa, where a monoclinic (Mc) but metrically cubic transition occurs from the ambient tetragonal P4 mm structure in pure PbTiO3; whereas the Raman lines (forbidden in the cubic phase) remain until ca. 17 GPa, where a monoclinic-cubic transition is known in lead titanate.

11.
J Phys Condens Matter ; 31(7): 075401, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30523956

RESUMO

Piezoelectric and other physical properties are significantly enhanced at (or near) a morphotropic phase boundary (MPB) in ferroelectrics. MPB materials have attracted significant attention owing to both fundamental physics as well as the possibility of well-regulated energy and information storage devices which are dominated by lead (Pb)-based materials. Here, we report the crystal structure, Raman spectra, dielectric constant and polarization near the MPB of lead free (1 - x) Na0.5Bi0.5TiO3 - x BaTiO3 (0.00 ⩽ x ⩽ 0.10) solid-solution, prepared by sol-gel auto combustion technique and sintered by microwave sintering technique. With the addition of BaTiO3 into Na0.5Bi0.5TiO3, it induces a structural phase transition from R3c (a single phase) to R3c + P4mm (a dual phase) close to x = 0.06 and 0.07 and transform to a high symmetry tetragonal phase P4mm at higher compositions (x = 0.08 to 0.10) as evident from our x-ray Rietveld refinement and Raman spectroscopic results. We perform first-principles calculations based on density functional theory that confirm a structural transition from a rhombohedral to a tetragonal phase under increasing x. In the prepared solid solution, an anomalous enhancement of remnant polarization ([Formula: see text]) was observed for x = 0.06 and 0.07, which has been explained based on the existence of the MPB. On the other hand, the value of coercive field [Formula: see text] was found to be decreased linearly from x = 0.00 to 0.06; it is constant for higher compositions. Further details of the ferroelectric properties on the electric field poled samples have been studied and compared with the as-grown (unpoled) samples.

13.
Rep Prog Phys ; 80(11): 112502, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28752823

RESUMO

The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

15.
J Mater Sci ; 52(1): 285-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27829689

RESUMO

Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr0.53Ti0.47O3-PbFe0.5Ta0.5O3 (PZT-PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr0.53Ti0.47O3-PbFe0.5Nb0.5O3 (PZT-PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe0.5Ta0.5O3. As for PZT-PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic-tetragonal-monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel-Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT-PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales.

16.
Phys Chem Chem Phys ; 19(1): 210-218, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27901150

RESUMO

Multiferroic composite structures, i.e., composites of magnetostrictive and piezoelectric materials, can be envisioned to achieve the goal of strong room-temperature ME coupling for real practical device applications. Magnetic materials with high magnetostriction, high Néel temperature (TN), high resistivity and large magnetization are required to observe high ME coupling in composite structures. In continuation of our investigations on suitable magnetic candidates for multiferroic composite structures, we have studied the crystal structure, dielectric, transport, and magnetic properties of Co0.65Zn0.35Fe2O4 (CZFO). Rietveld refinement of X-ray diffraction patterns confirms the phase purity with a cubic crystal structure with the (Fd3[combining macron]m) space group; however, we have found a surprisingly large magneto-dielectric anomaly at the Néel temperature, unexpected for a cubic structure. The presence of mixed valences of Fe2+/Fe3+ cations is probed by X-ray photoelectron spectroscopy (XPS), which supports the catonic ordering-mediated large dielectric response. Large dielectric permittivity dispersion with a broad anomaly is observed in the vicinity of the magnetic phase transition temperature (TN) of CZFO suggesting a strong correlation between dielectric and magnetic properties. The evidence of strong spin-polaron coupling has been established from temperature dependent dielectric, ac conductivity and magnetization studies. The ferrimagnetic-paramagnetic phase transition of CZFO has been found at ∼640 K, which is well above room temperature. CZFO exhibits low loss tangent, a high dielectric constant, large magnetization with soft magnetic behavior and magnetodielectric coupling above room temperature, elucidating the possible potential candidates for multiferroic composite structures as well as for multifunctional and spintronics device applications.

17.
Proc Math Phys Eng Sci ; 472(2190): 20150850, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436965

RESUMO

This paper concerns steady, high-Reynolds-number flow around a semi-infinite, rotating cylinder placed in an axial stream and uses boundary-layer type of equations which apply even when the boundary-layer thickness is comparable to the cylinder radius, as indeed it is at large enough downstream distances. At large rotation rates, it is found that a wall jet appears over a certain range of downstream locations. This jet strengthens with increasing rotation, but first strengthens then weakens as downstream distance increases, eventually disappearing, so the flow recovers a profile qualitatively similar to a classical boundary layer. The asymptotic solution at large streamwise distances is obtained as an expansion in inverse powers of the logarithm of the distance. It is found that the asymptotic radial and axial velocity components are the same as for a non-rotating cylinder, to all orders in this expansion.

18.
Phys Rev Lett ; 116(25): 257601, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391752

RESUMO

We demonstrate electrical mapping of tetragonal domains and electric field-induced twin walls in SrTiO_{3} as a function of temperature and gate bias utilizing the conducting LaAlO_{3}/SrTiO_{3} interface and low-temperature scanning electron microscopy. Conducting twin walls appear below 105 K, and new twin patterns are observed after thermal cycling through the transition or on electric field gating. The nature of the twin walls is confirmed by calculating their intersection angles for different substrate orientations. Numerous walls formed when a large side- or back-gate voltage is applied are identified as field-induced ferroelectric twin walls in the paraelectric tetragonal matrix. The walls persist after switching off the electric field and on thermal cycling below 105 K. These observations point to a new type of ferroelectric functionality in SrTiO_{3}, which could be exploited together with magnetism and superconductivity in a multifunctional context.

19.
Sci Rep ; 6: 25724, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185343

RESUMO

BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3).

20.
J Phys Condens Matter ; 28(26): 265901, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27165848

RESUMO

We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V(-1)) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi(5+) ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 + states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...